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Factorization of Multivariate Polynomials 
Over Finite Fields 

By J. von zur Gathen and E. Kaltofen* 

Abstract. We present a probabilistic algorithm that finds the irreducible factors of a bivariate 
polynomial with coefficients from a finite field in time polynomial in the input size, i.e., in the 
degree of the polynomial and log (cardinality of field). The algorithm generalizes to multi- 
variate polynomials and has polynomial running time for densely encoded inputs. A determin- 
istic version of the algorithm is also discussed, whose running time is polynomial in the degree 
of the input polynomial and the size of the field. 

1. Introduction and Summary of Results. Polynomials with coefficients from a 
finite field and their factorization properties have been considered for a long time. In 
1846, Schonemann proved that univariate polynomials over Z. have the unique 
factorization property (Schonemann [22, p. 276]). Since there is only a finite number 
of factor candidates, the factorization problem is immediately shown to be computa- 
ble. However, an efficient algorithm to compute these factors was not presented 
until the late 1960's. Berlekamp [3] then devised an algorithm which factors 
univariate polynomials over a finite field F with q elements in O(qn3) field 
operations, where n is the degree of the polynomial (see Knuth [16, Section 4.6.2]). 
This running time is polynomial both in n and q. Soon after, Berlekamp [4] made the 
running time polynomial in the input size, i.e., using log q rather than q, at the 
expense of introducing a probabilistic rather than deterministic method. It seems 
natural to ask whether this can also be accomplished for multivariate, say bivariate 
polynomials, over F. In particular, given a bivariate polynomial of total degree n 
with coefficients in F, can one find (probabilistically) its factors in sequential 
running time polynomial in n and log q? 

Older algorithms proposed for this problem (e.g., Musser [20, 2.7.2], and Daven- 
port-Trager [9]) had an exponential worst case running time. The same was true of 
the Berlekamp-Zassenhaus approach to factoring integer polynomials, until 
Lenstra-Lenstra-Loviasz [19] (for the univariate case) and Kaltofen [14], [15] (for the 
multivariate case) provided a polynomial-time solution. In this paper, we give a 
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polynomial-time factorization algorithm for bivariate polynomials over a finite field, 
based on the methods from Kaltofen [14]. Chistov-Grigoryev [8] and Lenstra [18] 
have also presented polynomial-time algorithms for this problem. Both these papers 
are based on the short vector algorithm for lattices from Lenstra-Lenstra-Lovasz 
[19], and are quite different from ours. 

Our algorithm has two variants: a probabilistic one (Las Vegas) with running time 
(n log q)O(l), and a deterministic one with running time (nq)0(1), where n is the 
degree of the input polynomials and q the cardinality of the coefficient field (Section 
4.2). In our deterministic version, q could be replaced by log q if one could factor 
univariate polynomials over finite fields in deterministic time polynomial in log q. 
Observe that n log q is the input size in a natural "dense" encoding of polynomials. 
Our description concentrates on the probabilistic variant, which may be the more 
important one for practical purposes. 

We also give a parallel variant (Section 4.1) for our algorithm which runs in 
parallel time O(log2n log q), based on the results for univariate factorization in von 
zur Gathen [11]. 

It is straightforward to generalize our algorithm for factoring multivariate poly- 
nomials (Section 4.3). Again the running time is polynomial in the input size, 
provided the inputs are encoded as dense polynomials. Chistov-Grigoryev [8] and 
Lenstra [18] also present multivariate factoring algorithms of polynomial running 
time. Using an effective Hilbert Irreducibility Theorem and the results presented 
here, von zur Gathen [12] presents a polynomial-time factoring procedure for 
sparsely encoded multivariate polynomials. 

2. Factoring a Nice Polynomial. The algorithm for factoring an arbitrary poly- 
nomial f E F[x, y] proceeds in two stages. We first preprocess f into a "nice 
format", and then factor the nice polynomial. We start by describing the crucial 
second stage. 

We assume that an algorithm for factoring univariate polynomials over F is given. 
This algorithm will be allowed to be probabilistic (Las Vegas), so that it either 
returns the correct answer or "failure", the latter with small probability. 

Definition 2.1. Let F be a field, and f E F[x, y]. We call f nice if the following 
conditions hold: 

(N1) f (x, 0) E F [ x ] is squarefree. 

(N2) f is monic with respect to x. 

Algorithm QUICK FACTORING. 
Input: A nice polynomialf E F[x, y]. 
Output: An irreducible factor g E F[x, y] of f. 

1. Compute an irreducible monic factor h E F[x] of f(x, 0). If h = f(x, 0), then 
return f. If the probabilistic univariate procedure returns failure, then return 
"failure". 

2. Set dx = degxf, dy = degyf, and d = 2dxdy. Set E = F[t]/(h(t)), and ao = 

(t mod h(t)) E E. We use the Newton iteration in steps 3 and 4 to compute 
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b E E[y] such that 

f(b, y) 0 modyd+ 

in E[y]. 
3. Set s = 1/fx(a0, O) E E, wherefx = af/ax E F[x, y]. (Note that fx(a0, 0) 0 0, 

since otherwise a0 would be a double zero for f(x, 0), contradicting its 
squarefreeness.) 

4. For k = 1, ... . ,d compute 

ak = ak-I - sf(ak-1, y) E E[y]. 

("mod y i.e., truncating the powers y' of y with 1 > k. Then f(ak) - 

modyk?1). Set b = ad. 

5. Find the minimal i, deg h < i < dx, for which there exist u u,. . E.,u = E F[y] 
such that 

deg.uj < dy for 0 j < i, 

b' + u jbu1 0modyd+l 
0< i 

Compute the corresponding u0, . . , u- 1. 

6. Return 

g = xi + ujxi E- F[x, y]. 
0<j< i 

For the timing analysis, we assume that the factorization procedure used in step 1 to 
factor a univariate polynomial of degree e takes at most T(e) operations in F. We 
will later allow a probabilistic procedure (Las Vegas), which either correctly returns 
an irreducible factor, or "failure". 

THEOREM 2.2. Let f E F[x, y] be nice, and assume that step 1 of algorithm QUICK 
FACTORING does not return "failure ". Then the following hold: 

(i) The output is an irreducible factor off. 
(ii) Let n be the total degree of f, and dx the degree of f with respect to x. The 

algorithm can be performed in 0(n3dj4) + T(dx) or 0(n7) + Tr(n) operations in F. 

Proof. The correctness claim (i) follows just as in Kaltofen [14, Section 4]. The 

output g will be the irreducible factor of f such that h divides g(x, 0). 
In applying (ii), we will need the first estimate, which clearly implies the second 

one. First observe that step 3 can be performed in O(dx) operations in E. Each ak in 
step 4 takes 0(dx) operations in E[y] (computing mod yk+ 1). By Lemma 2.3, step 4 
then takes 0(d 2dx log4 d) operations in E. 

In step 5, we first compute b2, b3,. . . ,bdx in 0(dx) operations in E[y] (again mod 

yd+l) or 0(dxd log4 d) operations in E. Then we have to solve a system of at most 
(d + 1)dx linear equations in at most dx(dy + 1) unknowns over F. (Note that one 
equation in E corresponds to less than dx equations in F.) Gaussian elimina- 
tion solves the system in 0((dx(dy + 1))2(d + 1)dx) or 0(d3dx) operations in F. 
Noting that [E: F] < d, d < ndx < n2, and using Lemma 2.3, we get a total of 
0(d 3d + d2d 2log4 d log4 dx) or 0(n3d4) operations in F. L0 
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The following lemma gives an upper bound on the time to perform arithmetic in 
finite field extensions. The more refined algorithms by Schonhage-Strassen [24], 
Schonhage [23], and Lempel-Seroussi-Winograd [17] give better bounds on the 
number of nonscalar operations needed for multiplication. 

LEMMA 2.3. Let F be an arbitrary field, and h E F[x] of degree d. Then an 
arithmetic operation (+, -, *, division by an invertible element) in F[x]/(h) can be 
performed in O(d log4 d) operations in F. If the cardinality #F of F is at least 2d, 
then it can be performed in O(d log2 d) operations. 

Proof. Let q = #F. We consider the elements of F[x]/( h) as being represented 
by polynomials in F[x] of degree less than d (i.e., by its sequence of d coefficients). 
The last claim is well-known (see Aho-Hopcroft-Ullman [1, 8.3]). If q < 2d, we can 
(deterministically) compute an irreducible polynomial w E F[t] of degree [logq 2d 1 
(see Theorem 3.1). Setting K = F[t]/(w), an operation in F[x]/(h) c K[x]/(h) 
can be simulated in O(d log2 d) operations in K, and an operation in K costs 
O(log2 d) operations in F, giving a total of O(d log4 d) operations in F for each 
operation in F[x]/(h). El 

Remark 2.4. Some simplifications of the algorithm may be of practical interest. 
Step 4 only has to be executed for k = 1,. . . , d, where 

dy (2dX 1) 

(See Kaltofen [14, Theorem 4.1].) The algorithm can also be performed without the 
assumption that f is monic with respect to x. If c E F[y] is the leading coefficient, 
then step 4 has to be executed for k = 1, . . , 8, where 

[dy(2dx-1) + deg c(dx + 1)1 
degh h 

In step 5, we then have to consider 

degyuj < dy degc for0 <j <i, 

cb' + E ujbj-O mody8+, 
0<j < i 

and in step 6, we have to compute 

v = gcd(c, u0,...,ui) F[y] 

and return 

g cx + E j xj. 
? - -x' 

3. The Preprocessing Stage. In this section we describe the algorithm for factoring 
an arbitrary bivariate polynomial over a finite field. It converts the input polynomial 
into a nice polynomial, calls QUICK FACTORING, and then determines a factor 
of the input polynomial. 

We first need an algorithm for the gcd of two bivariate polynomials. We use a 
modular approach for this; see Brown [5]. 
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Algorithm BIVARIATE GCD. 
Input: Two polynomials f, g E F[x, y], where f is monic with respect to x, and F is 

an arbitrary field. 
Output: The monic (with respect to x) gcd h c F[x, y] of f and g. 

1. Set dx = max{degxf, degxg}, dy = max{degyf, degyg}, and d = 2dxdy. If 
d = 0, use a procedure for univariate gcd's. If q = #F < 3d, then do the 
following. Choose an irreducible monic polynomial w E F[t] of degree 
[log q 3d 1, and replace F by the extension field F [ t]/( w). 

2. Choose any pairwise distinct a1,..., a2d E F such that g(x, ai) has the same 
degree in x as g. (We need at most 2d + dy < 3d elements in F to locate such 
evaluation points.) 

3. For all i, 1 < i < 2d, compute the monic 

hi = gcd(f(x, ai), g(x, ai)) = E hijxj E F[x]. 
0<j 

4. Set m = min{deg hi: 1 < i < 2d}, and choose some M c {1,. . . ,2d} with 
#M = dy + 1 anddegh1= mforalli EM. 

5. For 0 < j < m, interpolate the h 1's: compute bj E F[y] of degree at most d, 
with bj(ai) = hij for all i E M. (In particular, bm = 1.) 

6. Return h = X0,<j,m bjx'. 

THEOREM 3.1. Let f, g E F[x, y], where f is monic with respect to x, and let d be as 
in step 1 above. Then algorithm BIVARIATE GCD has the following properties: 

(i) It correctly computes a gcd off and g. 
(ii) It can be performed in O(d210g4 d) operations in F. If #F >? 3d, then it takes 

0(d 2log2 d) operations. 

Proof. Let h0 = gcd(f, g) E F[x, y] be monic with respect to x, and f = uh0, 
g = vh0 with u, v e F[x, y]. Then the resultant 

r = resx(u, v) E F[y] 

is a polynomial of degree less than d, and for any a E F with r(a) = 0 and 
degg(x, a) = degxgwe have 

gcd(f(x, a), g(x, a)) = ho(x, a). 

Thus for at least d among h1,. ., h2dwe have 

h = ho(x, ai), 

and deg hi > degx h0 for all i. Therefore, some M as in step 4 can be foun'd, and 
steps 5 and 6 correctly compute h = h0. 

If q < 3d, then we can find w, as in step 1, deterministically by testing each monic 
polynomial w E F[t] of degree 1 = [logq 3d 1 for irreducibility. There are at most 
q' < 3dq < 9d2 such polynomials, and each irreducibility test takes 

O(log2 d log2log d log log log d log q) or O(log4 d) 

operations in F (Rabin [21]). Any operation in F[t]/(w) can be simulated by 
O(log2 d) operations in F. This factor log2 d has to be multiplied to the estimates for 
steps 3 to6onlyifq < 3d. 
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In step 3, the number of operations is 0(d) for each f(x, ai) and g(x, ai), 
and 0(dxlog2 dx) for each hi (Aho-Hopcroft-Ullman [1, 8.9]), for a total of 
0(d(d + dx log2 dx)) operations. Obviously m < dx, and the interpolations in 
step 5 take 0(dx(dYlog2d,)) operations (Aho-Hopcroft-Ullman [1, 8.7]). The total 

is 0(d21log2 d log2 d) operations, and 0(d210g2 d) if q > 3d. El 
We now describe the algorithm for computing a factor of a bivariate polynomial 

over a finite field. 

Algorithm BIVARIATE FACTORING. 
Input: A polynomial f E F[x, y], where F is a finite field with q elements, and 

p = char F, the characteristic of F. 
Output: Either a nonconstant factor g E F[x, y] of f, or "failure". 

1. (Check primitivity.) Set dx = degxf, and writef = 2O<i<d f xi with fi E F[y]. 
Compute the content 

c= contx(f) = gcd(fo,...jtd) E F[y]. 

If c is nonconstant, then return c. 
2. (Check squarefreeness.) Compute fx = af/ax and fh = af/ay. If fx = fv = 0, 

then write f = Y f11x'Py'P set g = LyJ and return g. (We have 
gP = f.) If fx = 0 and fy # 0, then interchange the role of x and y and go to step 
1. Now we have fx # 0. Compute the monic g = gcd(f, fx). If g # 1, then 
return g. 

3. (Monic version of f.) Let Jo E F[y] be the leading coefficient of f with respect 
to x. Set 

V = fodx -1f ( , y ) E F[x, y]. 

(v is monic of degree dx with respect to x.) 
4. (Extend F.) Set dy =degY v, m=4max*Fdx, d, and d =2dxd. If q=#F>d, 

then set F* = F. Otherwise choose a prime number / with m < / < 2m. Choose 
monic polynomials wl,... . W81n E F[t] of degree / at random, and test them for 
irreducibility. If none is irreducible, return "failure". Otherwise choose an 
irreducible wi, and set F* = F[t]/(wi). 

5. (Good evaluation point.) Set 

r = discx(v) = resx(v, av E F[y]. 

(r is a nonzero polynomial of degree < (2d-, - I)dx < d.) Choose c E F* such 
that r(c) = 0, and set 

f* = v(x, y - c) E F*[x, y]. 

(f * is nice.) 
6. Call procedure QUICK FACTORING with input f* E F*[x, y], to return 

g* E F*[x, y]. 
7. Set 

e = degxg*, g1 =f-elg*(xf0, y + c) E F*[x, y], 

go = contx(gl) E F*[y], g = glIg0E F[x,y], 
and return g. 
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For a concrete estimate of the running time, we have to implement step 1 of the 
procedure QUICK FACTORING. The probabilistic version of Berlekamp's uni- 
variate algorithm due to Cantor-Zassenhaus [7] (see also Knuth [16, 4.6.2]) factors a 
polynomial of degree e in 

O(e3 + e2logelogq) 

operations in F, where q = #F. Other algorithms for this problem are due to 
Berlekamp [4], Rabin [21], Ben-Or [2], and Camion [6]. This algorithm can be written 
as a Las Vegas procedure, so that it either returns an irreducible factor or "failure" 
-the latter with probability at most 2. The algorithm requires O(e log e) random 
choices from F, and we assume that they can be performed in O(e log e log q) 
random bit choices. The cost of the Las Vegas univariate factoring procedure in step 
1 of QUICK FACTORING is dominated by the cost of other steps. So we can apply 
that procedure several times, say n + 1 times, to obtain failure probability at most 
2- ,i1, where n is the total degree of f. 

THEOREM 3.2. Let F be a finite field with q elements, and f E F [x, y] of total degree 
n. Algorithm BIVARIATE FACTORING with input f has the following properties: 

(i) Iff is irreducible, it either returns f or "failure ". 

(ii) 1iff is reducible, it either returns a proper factor off or "failure ". 

(iii) Failure occurs with probability at most 2-. 
(iv) The algorithm can be performed with 

O(n710g4 n log2q(n5 + log n logq)) 

bit operations, and O(n5 log q) random bit choices. 

Proof. It is well-known how the factorization of f and v in F[x, y] are related; see 
Knuth [16, Exercise 4.6.2-18], using the coefficient domain F[y]. 

By a result of von zur Gathen [12, Section 5], the factorizations of v in F[x, y] 
and F*[x, y] are the same. The relation between factors of v and f * in F*[x, y] is 
obvious. Also, f * is nice. 

Note that an 1 as in step 4 exists by Bertrand's Postulate (see Hardy-Wright [13]). 
In order to see that some c as in step 5 can be found, it is sufficient to show that 
#F* = ql >, d : 

q'> 2m+ 1 > 2m2 > d. 

(The second inequality holds for all m > 1 with m # 3. But for m = 3 we have 1 > 5 
and q' > d.) We have now proven (i) and (ii) in the case where no failure occuirs. 

Failure can either occur in step 6-with probability at most 2n1 by the remark 
before Theorem 3.2-or in the computation of wi in step 4. There are exactly 
(ql - q)/l many irreducible monic polynomials of degree 1 in F[x] (Schbnemann 
[22, Section 46, p. 317]), so that step 4 has failure probability 

< (1 - q'/ q )81fl (1 - 1)8/fl e-2n -n-1 

Therefore the total failure probability is at most 2-. 
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For the timing estimate, first note that d, < n, dy < n2, d = 2dX d < 2n3, 
1 < 2m < 2n2, and the total degree n* of f* is not more than n2. Step 1 takes 0(n3) 
operations, and step 3 0(n4) operations. In step 2, the gcd can be computed in 
0(d210g4 d) operations in F by Theorem 3.1, and the pth root in 0(d log q/p) 

operations in F, since degyf < dy with d from step 4. The prime number 1 can be 
found deterministically in 0(m"3/210g2 m) bit operations, and w in 

0(lnm2 log2 m log log m log q) or 0(n71og3 n log q) 

operations in F (Rabin [21]). Steps 5 and 7 both take 0(dxd 2) operations. The cost 
of the algorithm is dominated by the running time for step 6, which is 

0((n* )3d4+ n(d3 + d 2logdxlog(q')) 

or 0(n10 + n5 log n log q) operations in F*. Each operation in F* can be simulated 
by 0(1 log4 1) operations in F by Lemma 2.3, and 0(1 log4 1 log2 q) bit operations. 
Thus the total cost is 

O(n n7log4n log2q(n5 + log n log q)) 

bit operations. 
The number of random bit choices is 0(lnl log q) or 0(n5 log q) in step 4, and 

0(nd log dx log q) or 0(n2 log n log q) in step 5. 0 
We note that if q > d, then the algorithm uses F* = F and runs in 

O(n3 log2q(n7 + log n log q)) 

bit operations. 
Once we have found one nontrivial factor using BIVARIATE FACTORING, we 

can of course apply the algorithm to this partial factorization. Repeating this yields a 
probabilistic algorithm which returns either the complete factorization of the input 
polynomial, or "failure". The total number of bit operations is 

0(n81og4n log2q(n5 + log n log q)), 

and the number of random bit choices is 0(n6log q). The failure probabiliy can be 
made as small as n 2-2n < 2 -n by repeating the algorithm twice at each stage, in fact 
less than any prescribed - > 0 by repeating the whole procedure at least (log -)/n 
times. So we have 

COROLLARY 3.3. Let F be a finite field with q elements. Polynomials in F[x, y] of 
total degree n can probabilistically (Las Vegas) be factored completely in time 
polynomial in n and log q. 

4. Some Variants. 
4.1. A Parallel Version. The basic subroutines for algorithm BIVARIATE FAC- 

TORING are a univariate factoring procedure over finite fields, computing uni- 
variate gcd's, and solving systems of linear equations over a finite field (which also 

solves the interpolation step in BIVARIATE GCD). In von zur Gathen [11], all these 
tasks have been shown to be probabilistically solvable in parallel with 0(log2n) 
operations in F (respectively 0(log2n log2k log p) for factoring). Here n is the total 

degree of the input polynomial, p = char F, and q = pk = #F. For a complete 
factorization, one would lift all irreducible factors of f(x, 0) from step 1 of QUICK 
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FACTORING in parallel, using a quadratic Newton procedure (see, e.g., von zur 
Gathen [10]), and then discard duplicate ones. As our model of parallel computation 
we can take Boolean circuits. Also a prime number 1 as in step 4 of BIVARIATE 
FACTORING can be found in parallel with O(log2n) bit operations. 

The resulting Las Vegas algorithm returns either the complete factorization of the 
input polynomial, or "failure"; the latter with probability no more than 2-n. The 
number of processors required is polynomial in n and log q. Thus we have 

THEOREM 4.1. Let F be a finite field with q = pk elements, where p = char F. 
Polynomials in F[x, y] of total degree n can probabilistically be factored completely in 
parallel time O(log2n log 2(kn)log p + log n log q). 

The second summand comes from the computation of pth roots in step 2 of 
BIVARIATE FACTORING, and the first summand from step 1 of QUICK 
FACTORING, where a univariate polynomial of degree at most n over a field with 
not more than pkn2 elements has to be factored. In step 4 of QUICK FACTORING, 
each step of the quadratic Newton iteration has to compute s E E[y] such that 

sfk(ak, y) 1 mod y2k This congruence can be considered as a system of linear 
equations over the ground field, and solved in parallel time O(log2n). 

4.2. A Deterministic Version. Algorithm BIVARIATE FACTORING can be 
viewed as a reduction from bivariate factoring to univariate factoring over finite 
fields. All steps of this reduction are deterministic, except the choice of wi E F[t] in 
step 4. We need wi in order to construct F* with #F* > d, so that step 5 can be 
executed. But it is sufficient to have w + E F [t] with 1= deg w +> logq d, and use 
F+= F[t]/(w+). Such an w+ can be found deterministically in time polynomial in d. 
The problem is that we are not guaranteed that an irreducible factor of f is 
irreducible in F+[x, y]. Our choice for the degree of w was motivated by the fact that 
then irreducible factors remain irreducible in F*[x, y] (von zur Gathen [12]), and we 
can avoid the costly norm computation below. 

However, the case of w+ as above can be salvaged by introducing the norm 

N(g) = NF+(X y)/F(x y)(g) = (-1)"res,(w, g) 

for g E F+[x, y], where we choose g E F[x, y, t] of degree i < 1 in t such that g g 
mod w (see van der Waerden [25, p. 89]). It is well-known that if g E F+[x, y] is an 
irreducible factor of f, then N(g) E F[x, y] is a power of an irreducible factor of f 
(Weyl [26, 1.5]). This irreducible factor is easily found as the gcd of f and N(g). Thus 
we have 

THEOREM 4.2. Let F be a finite field with q elements. 
(i) Factoring bivariate polynomials over F of total degree n is deterministically 

reducible to factoring univariate polynomials of degree at most n (over a small finite 
extension field of F). The number of operations for the reduction is polynomial in n and 
log q. 

(ii) Bivariate polynomials over F of degree n can be factored deterministically with a 
number of operations that is polynomial in n and q. 

Proof. The above discussion has proven (i); we have to factor a univariate 
polynomial over a finite extension field F+ of F. For (ii), we use any of the 
deterministic variants of Berlekamp's algorithm. O 
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4.3. A Multivariate Version. The algorithm can easily be modified for factoring 
multivariate polynomials over a finite field with q elements. One variable is selected 
as the main variable, and constants are substituted for the remaining variables. The 
resulting univariate polynomial is then factored and this factorization lifted. See 
Kaltofen [15] for details. 

The running time of the resulting probabilistic algorithm is polynomial in the 
input size, and polynomial in the input size and q for the deterministic version. The 
input size for a polynomialf E F[xl,... ,xk] of degree d is O(dklog q) in a "dense 
encoding". 

Another measure of size-of greater practical relevance-is the length of a 
"sparse encoding" of a multivariate polynomial, which is proportional to the 
number of nonzero terms in the polynomial. Multivariate polynomials can be 
factored in polynomial time also under this measure, taking input and output size 
into account (von zur Gathen [12]). 

4.4. Remark. Let F be a finite field with q elements. We have (deterministically) 
reduced the factorization of a bivariate polynomial f E F[x, y] of total degree n to 
factoring univariate polynomials of degree at most n over a finite extension of F. 
This problem, in turn, can be reduced to factoring univariate polynomials over F 
itself, using the method in Berlekamp [4, Section 6]. All reductions are polynomial in 
n and log q. 

4.5. Remark. Our techniques do not allow us to reduce the exponent 7 in the 
estimate for QUICK FACTORING in Theorem 2.2(ii). However, it would be easy 
to improve the running time of algorithm BIVARIATE FACTORING. In Remark 
2.4 we have indicated how to avoid the necessity of monic inputs. This would result 
in an O(n7log4n log2q) probabilistic algorithm for factoring a bivariate polynomial 
of degree n over a finite field with q elements. 

Open Question. Can one decide the irreducibility of a polynomial f E Zp[x, y] 
deterministically in time polynomial in deg f and log p? 
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